
Proof General meets IsaWin

Combining Text-Based And Graphical User Interfaces

David Aspinall 1

LFCS, School of Informatics, University of Edinburgh, U.K.

Christoph Lüth 2

Department of Mathematics and Computer Science, Universität Bremen

Abstract

We describe the design and prototype implementation of a combination of theorem
prover interface technologies. On one side, we take from Proof General the idea of
a prover-independent interaction language and its proposed implementation within
the PG Kit middleware architecture. On the other side, we take from IsaWin a
sophisticated graphical metaphor using direct manipulation for developing proofs.
We believe that the resulting system will provide a powerful, robust and generic
environment for developing proofs within interactive proof assistants that also opens
the way for studying and implementing new mechanisms for managing interactive
proof development.

1 Introduction

Proof General is a generic interface for interactive proof assistants, built on
the Emacs text editor [4,7]. It has proved rather successful in recent years,
and is popular with users of several theorem proving systems. Its success
is due to its genericity, allowing particularly easy adaption to a variety of
provers (primarily, Isabelle, Coq, and LEGO), and its design strategy, which
targets experts as well as novice users. Its central feature is an advanced
version of script management, closely integrated with the file handling of the
proof assistant. This provides a good work model for dealing with large-scale
proof developments, by treating them similarly to large-scale programming

1 WWW: http://homepages.inf.ed.ac.uk/da
2 WWW: http://www.informatik.uni-bremen.de/~cxl

Preprint submitted to Elsevier Preprint 5 May 2004



developments. Proof General also provides support for high-level operations
such as proof-by-pointing, although these are less emphasised.

Proof General has some drawbacks, however. From the users’ point of view,
although the interface offers some high-level operations and tries to hide the
shell-window process, interaction is still firmly based on editing text written
in the proof assistant’s (often cryptic) command language. While there are
some menu entries and toolbar buttons to help initiate and complete a proof,
there is little in the way of hints or templates to help in constructing the bulk
of tactics and declarations used in writing proof scripts. From the developers’
point of view, Proof General is rather too closely tied with the Emacs Lisp API
which is somewhat unreliable, often changing, and exists in different versions
across different flavours of Emacs.

IsaWin is the instantiation of a generic graphical user interface to Is-
abelle [24,23,25]. It aims at providing an abstract user interface based on
a persistent visualisation metaphor and the concept of direct manipulation.
Because tactic applications are generated automatically, users can be less con-
cerned with the syntactic idiosyncrasies of the prover and can instead concen-
trate on the logical content of the proof. This abstract approach also allows
high-level operations: for example, there is support for proof-by-pointing (fold-
ing or unfolding equations), term annotations (the system can display the type
of sub-terms), or tactical programming (one can cut parts from the history of a
proof to make it into an elementary tactic, which can be reapplied elsewhere).

While IsaWin is usually met with initial approval, in particular from theo-
rem proving novices, it has some drawbacks. From the users’ point of view, it
has a rudimentary management of target proof scripts, and integrates foreign
proof scripts only reluctantly. From the developers’ point of view, customising
or adapting it to other proof assistants requires Standard ML programming,
and a good understanding of the data structures, so it is not possible to build
a custom version gradually (unlike with Proof General), and it is hard to
connect to provers not implemented in Standard ML.

Thus, Proof General and IsaWin can be considered as complimentary, with
each offering advantages to compensate for the other’s shortcomings. This
paper describes an attempt to combine their advantages in one system based
on the PG Kit infrastructure presented in [5,6]. The resulting system has an
event-based architecture and focuses on managing proof scripts as the central
underlying artefact. A generic interactive protocol language allows one to
connect different user interfaces (called displays); thus, IsaWin becomes one
particular user interface in this setting.

In the remainder of this paper, we describe the particular aspects of Proof
General and IsaWin that we want to build on (Sections 2 and 3), followed by
the design of the new system (Section 4) and a description of the prototype
implementation (Sections 5 and 6). We close by briefly mentioning related

2



work, and our vision for the future evolution of the project.

2 Proof General Basic Concepts

Emacs Proof General is the present incarnation of Proof General, based
on the ubiquitous Emacs text editor. 3 For Proof General, a proof consists
of the user-editable formal text (or proof script) which, when processed by
the machine, either constructs a representation or checks for the existence of
a proof in a formal system. The target proof script is the central focus of
development.

It doesn’t matter whether the proof script contains a tactic-style proce-
dural proof, or a declarative proof description. The interface relies on the
underlying proof assistant being able to process a proof script interactively
and incrementally, in a textual dialogue: the user issues a proof command,
and the system responds. A distinction is made between proper proof script
commands, which belong in the text, and improper commands, which do not.
Proper commands include statements of propositions to be proved, and the
contents of their proofs. Improper commands include undo steps, commands
for inspecting terms and for querying a database of available theorems. The
proper commands are stored in the proof script file, and coloured according
to progress in the proof: crucially, regions which have been processed by the
proof assistant are coloured blue and should not be edited. This is the idea of
script management as described in [12].

Proof General provides a simple browsing metaphor for replaying proofs,
via a toolbar for navigating in a proof script, see Fig. 1 for a screenshot.
Behind the scenes, this works by sending commands to issue proof steps and
undo proof steps. The undo behaviour relies on the built-in history of the proof
assistant, which typically forgets the history between steps of a proof once the
proof has been completed, i.e. only the whole proof can be undone then, not
single steps of it. 4 The undo behaviour splits the proof script into regions
(or spans) of consecutive lines which are atomic for undo. Spans are treated
linearly within the file, although they have a dependency structure which
expresses dependencies within the proof development itself: it is possible to
display this dependency within the interface, to highlight the auxiliary lemmas
used in proving a theorem, for example.

3 Several flavours of Emacs are supported, including XEmacs and GNU Emacs, running
on numerous platforms.
4 This is initially counter-intuitive to new users, although they soon get a feel for it. Proof
General could work equally well with provers which keep more history. It would also be
possible for Proof General to allow undo to arbitrary positions within proofs for provers
which discard history, simply replaying forward until the target point is reached. The
disadvantage with that design is that it could take any amount of time to perform the
replay, contrary to users’ expectations of “undo” operations being quick.

3



Fig. 1. The Proof General interface, in a default configuration. The window is split
into two panes, the bottom displaying the output from the proof assistant, the top
displaying the proof script, with background coloured according to progress.

Proof General provides an advanced implementation of script management
which synchronises file editing between the proof assistant and editor in a two-
way communication. Files are used to store proof scripts, representing parts
of developments. If the user completes processing a proof script file, Proof
General informs the prover, if the prover reads another file during processing,
it will inform Proof General, and similarly for undo operations at the file level.

Technically, Proof General is implemented mostly in Emacs Lisp, interfac-
ing with other Emacs packages, notably including X-Symbol [37] for displaying
mathematical symbols. A considerable effort has been made into making it
easy to adapt Proof General to new proof assistants, and it is possible to
configure by setting only a handful of variables, with little or no Emacs lisp
programming. But the mechanism is ad hoc: we try to anticipate and cater
for many different proof assistant behaviours within Proof General, supposing
that the proof assistant itself will not be modified. This works only so far:
for advanced features (such as proof-by-pointing [11] and proof-dependency
visualisation [26,31]), dedicated support from the proof assistant is inevitably
required.

To address the limits of the existing Proof General model, and particu-

4



larly of the Emacs Lisp implementation, Proof General (PG) Kit has been
designed [5,6]. The central idea is to use the experience of connecting to
diverse provers to prescribe a uniform protocol for interaction. Instead of te-
diously adapting Proof General to each prover, Proof General calls the shots,
by mandating a uniform protocol for interactive proof, dubbed PGIP, which
each prover must support.

As part of the work described in this paper, we have implemented a pro-
totype version of PG Kit. More details of the system architecture and PGIP
protocol are described later, in Section 4.1.

3 IsaWin Basic Concepts

IsaWin is the instantiation of a generic graphical user interface called Gen-
GUI for the Isabelle proof assistant. It provides a more abstract, less syntax-
oriented interface to Isabelle (and related provers), based on the visual metaphor
of a notepad [24]. All objects of interest, such as proofs, theorems, tactics,
sets of rewriting rules etc. are visualised by icons on a notepad, and manipu-
lated there using mouse gestures. More complex objects such as proofs can be
manipulated by opening them in a separate sub-window. IsaWin offers self-
contained history support, proof-by-pointing, dependency management and
session management.

The interface is based on the concept of direct manipulation: a continuous
representation of the objects and actions of interest with a meaningful visual
metaphor and incremental, syntax-free operations, i.e., user gestures such as
dropping an object onto another, pop-up menus or mouse clicks. Objects
are visualised by icons on a notepad (see Fig. 2). The icon is given by the
type of the object, which determines the available operations. Hence, when
users see an object visualised by a theorem icon, they know that if they drop
this object onto another theorem object, the theorem prover will attempt to
combine them by forward resolution, whereas if the theorem is dropped onto on
ongoing proof, a new proof step using backward resolution with this theorem
will be attempted. The type of an object further determines the operations
appearing in its pop-up menu and whether (and how) it can be opened into
a separate sub-window. The interface also keeps track of dependencies, i.e. if
one object is used as an argument to construct another object, and if objects
are changed or outdated, all dependent objects are outdated as well.

Drag&drop is resolved by a table indexed with the types of the dropped
and the receiving object respectively. The history is represented internally,
as the sequence of operations used to construct an object. This has some
advantages, as it allows an abstract manipulation of proofs; for example, we
can cut out parts from proof scripts and make them into reusable tactics. But
moreover it has severe disadvantages: as proof scripts are an external represen-

5



Fig. 2. The IsaWin interface. The main window shows the notepad and folder
navigation bar on the top, and the ongoing proof below. Two auxiliary windows
open here allow the search for theorems, and show the history of the proof.

tation of the history, a generic script management is not very straightforward
to implement, and indeed IsaWin only offers limited script management, com-
pared to Proof General. IsaWin has its own format to save and read proofs,
and while it has some limited support to produce proof scripts in Isabelle’s
native format, it cannot parse them. This makes it hard to use IsaWin on
proof scripts not developed using IsaWin, we can just load and replay them
without manipulating the contained proofs.

Technically, IsaWin is the instantiation of the generic graphical user in-
terface GenGUI with a particular Isabelle-specific module. GenGUI is imple-
mented completely in Standard ML (SML); to customise it (adding or chang-
ing icons, shortcut buttons, or menu entries), one has to change the instanti-
ating module. To adapt GenGUI to another proof assistant, one implements
a different module with a given signature, containing the object types, oper-
ations and the drag&drop table. This requires a good understanding of the
signature (and of SML), and also makes adaption to provers not implemented
in SML cumbersome.

For us, the experience with GenGUI and IsaWin has shown that the im-
plementation of an interface as an add-on to the proof assistant, even in the
same programming language, can leads to a less modular architecture, which

6



makes the interface difficult to reuse. It also makes the interface less robust: if
the prover diverges or returns a run-time error, the interface diverges or stops
as well. For these reasons, not many different adaptations of GenGUI exist,
and in comparison with Proof General, GenGUI has not fully delivered on its
promise of genericity.

A better architecture is to keep interface and proof assistant separate, and
specify their interaction cleanly and in a language independent way — which is
precisely what PGIP does. Proof scripts, understood broadly as the sequence
of proof steps leading to a goal, are the main artefacts the user is constructing
when working with a proof assistant, and as such should be represented and
manipulated explicitly, rather than implicitly as in GenGUI.

4 The Proof General Kit Architecture

The novelty of the work described in this paper is twofold. We provide the fist
implementation of a prover-independent protocol for interactive proof, and,
on top of this, we introduce a new user interface which is a synthesis of two
existing designs, combining text-based script processing with graphical direct
manipulation.

This section describes the ideas behind the architecture; Sections 5 and 6
describe the implementation and user interface.

4.1 Communicating Interactive Proof Components

The spirit of Proof General Kit is to use lightweight protocols to connect
together a range of components used for conducting interactive proof. Com-
ponents are loosely coupled, and may be run on different machines. The
specifics of the design are intended to work with existing theorem provers.
Thus, where some of our design decisions appear fairly conservative, this is
because we want to allow a gradual migration of existing theorem provers to
our architecture while maintaining interoperability. In our experience, this is
crucial for acceptance, both from users and theorem prover developers.

Fig. 3 illustrates the basic plan. The mediator has a central role: it in-
terfaces the various other components to the proof assistant and filesystem 5 .
Possible other components include a GUI for displaying and developing proof
graphically, a text editor for editing a proof script, and a web browser for
exploring the theory store or following a proof development remotely.

We expect that the other components have no access to the proof assistant
other than via the mediator. The other components may have direct access to
the theory store, but (especially in case of write access) this must be carefully
sanctioned by the mediator. This separation allows the mediator to organize

5 or network theory store, if supported by the prover

7



Proof
Assistant

Proof
Assistant

PGIP

Graphical User
Interface

Text Editor

Web Browser
File System Theory Store

Mediator

PGIP

Fig. 3. Proof General Kit Architecture

the synchronization messages needed for interactive development, for example,
maintaining a set of locked files.

4.2 PGIP: a Protocol for Interactive Proof

The main connecting protocol shown in Fig. 3 is called PGIP (standing for
Proof General Interactive Proof ), the syntax of which has been specified as
an XML format. The design of PGIP began by isolating and clarifying the
mechanisms currently implemented in Proof General.

PGIP messages can be divided into two classes: those sent to the prover
and those originating from the prover. Messages sent to the prover consist
of configuration commands, commands for inspecting various aspects of the
proof assistant state, and actual proof commands. Messages sent from the
prover include status display or error dialogues and messages to configure
(proof assistant specific) user-level menus and preferences.

Fig. 4 shows an example PGIP interchange between a prover and the in-
terface: the interface sends a proof command (<proofstep>), and the prover
responds with a new state (<proofstate>). Command and response are
wrapped up as <pgip> packets, containing meta-information such as a unique
identity (id) and sequence number (seq), which allows responses to refer to
earlier requests (with the refseq attribute). Notice that we generalise typical
RPC schemes which are single-request single-response, by allowing possibly
many responses to a request. The reason for this is so that the prover may
emit information to the interface gradually, perhaps during the progress of a
long proof. However, we do not allow the prover to initiate responses without
a previous request. The second message from the prover, <ready>, indicates
that it has completed processing a proof command. We expect that the main
proof process is single threaded, updating a proof state which is the focus of
interactive development. More generally, it is possible that secondary threads

8



<pgip origin="PG/Kit" id="sartre/cxl/13523" class="pa" seq="9">

<proofstep>apply (rule allI)</proofstep></pgip>

<pgip origin="Isabelle/Isar" id="sartre/cxl/1067416425.138"

class="pg" seq="21" refseq="9" refid="sartre/cxl/13523">

<proofstate><pgml><statedisplay>proof (prove): step 1

goal (lemma (Foo), 1 subgoal):

1. <sym name="And"/><atom kind="bound">x</atom>.

<atom kind="bound">x</atom> = <atom kind="bound">x</atom>

</statedisplay></pgml></proofstate></pgip>

<pgip origin="Isabelle/Isar" id="sartre/cxl/1067416425.138"

class="pg" seq="22" refseq="9" refid="sartre/cxl/13523">

<ready/></pgip>

Fig. 4. A real-life PGIP message exchange: above is a proof command sent to the
prover, below is the prover’s response.

would be available to inspect loaded theories, or that other processes would
be used to off-load the processing of some PGIP commands.

One example of using an auxiliary process is to handle <parsescript>

and <unparsescript> messages. We suppose that PGIP commands may
be generated directly by the interface, or by the user entering text in the
prover’s native language, which the prover has to convert into PGIP format.
Thus, there needs to be a way to parse proof script commands into PGIP
commands and “unparse” them back. The parse and unparse commands might
be handled by the prover itself, or instead with an additional component.
For example, for simple enough proof script languages we could implement a
generic parser based on regular expressions; this is similar to the way that the
present Emacs Proof General works.

4.3 PGML: A Markup Language for Proof Display

Messages originating from the prover can contain a representation of the proof
state, for example a list of subgoals to be solved to complete the proof. To
communicate these, PG Kit includes another XML format, PGML, the Proof
General Markup Language. The markup language is intended for display-
ing concrete syntax. It includes representations for mathematical symbols,
along with the possibility of hidden annotations which express term struc-
ture. These annotations can be used to implement sub-term cut-and-paste,

9



proof-by-pointing or similar features [11]. The prover response in Fig. 4 shows
a PGML message embedded in the proof state display, with annotations for
denoting the different kinds of variables.

There are already existing XML-based document formats designed for dis-
playing mathematics (MathML, [35]), and transferring mathematical content
between applications (OpenMath, [30]). Later on, we hope to use these lan-
guages with PGML. However, these formats require the abstract syntax of
terms to be sent back and forth, with the markup into concrete syntax made
in the mediator (or even the display). Although we believe that this is ul-
timately the right way, it cannot be easily accommodated by existing proof
systems in a generic way, as these have often have their own (very elaborate)
provisions for rendering concrete syntax. These mechanisms are supported
immediately by PGML, while at the same time offering a migration route;
this is one of the conservative design decisions mentioned above.

4.4 Incremental Proof Development

PGIP assumes an abstract model of incremental proof development, where
we suppose there are four fundamental states occupied by the prover, with
transitions between the states given by different kinds of proof commands.

Theory Open

Proof Open

File Open

Top Level

OpenFile

OpenTheory UndoTheoryStep
TheoryStep

CloseFile
CloseTheory

CloseProof
PostponeProof
GiveUpProof
AbortProof

OpenProof

UndoProofStep
ProofStep

Fig. 5. Incremental proof development.

Fig. 5 shows the fundamental prover states, and the transitions between them.
The four states illustrated are:

(i) the top level state where nothing is open yet;

(ii) the file open state where a file is currently being processed;

(iii) the theory open state where a theory is being built;

(iv) the proof open state where a proof is currently in progress.

The reason for distinguishing the states is that different commands are avail-
able in each state, and the prover’s undo behaviour in each state can be

10



different. In the theory state, for example, we may issue theory steps which
add declarations or definitions to the theory, or we may undo the additions.
In the proof state, we can issue proof steps and undo these steps, or complete
the current proof attempt in a number of ways. These fundamental states also
give rise to a hierarchy of objects: the top level may contain a number of files,
files may contain theories, and theories may contain proofs.

Proof commands may take additional arguments. An OpenTheory com-
mand typically gets passed the name of the theory to built, and maybe parent
theories (depending on the prover), whereas OpenProof will require a goal
to be proven. Most proof commands correspond directly to textual elements
which (usually) appear in the proof script language; these are the proper proof
commands mentioned earlier. The improper commands are used for control-
ling the prover’s state, and do not appear in the proof script being developed.
These include the three italicized undo commands shown in Fig. 5.

Proof development proceeds by traversing the fundamental states, building
up proof scripts along the way. This incremental development model is an
abstraction of what occurs in a typical prover, based on the current model used
in Proof General. Some provers may not implement all of this (for example,
some provers do not know anything about files; others identify theories and
files), and some provers may provide richer notions (for example, nested proofs
or generic proofs) which are not captured in PGIP.

There is a difference here between provers whose proof scripts essentially
record the individual interaction commands (for example, Isabelle and Coq),
and those where final proof scripts may take a slightly different form. For
example, in HOL scripts are encouraged to contain “batch” proofs which are
executed more efficiently and directly outwith the interactive mode to reproof
theorems in a single step. To handle this second possibility, we would employ
automatic transformations between the two forms (although experienced HOL
users might want to be able to hand-optimise their direct proofs).

Another (intentional) restriction in this first version of PGIP is to only
allow sequential, single-threaded movement through the incremental proof de-
velopment states shown in Fig. 5. The picture does not allow for the possibility
of opening several files at once, or working on several open proofs within the
same theory. This simplifies things for the protocol (and its implementation
within the prover), but it does not preclude the mediator from implementing
more flexible development mechanisms, hiding the underlying context switch-
ing from the user. Indeed, this is implemented in our prototype described in
Section 5.

11



5 Implementing the PG Kit Architecture

The ideas behind the PG Kit system architecture have been outlined above.
The architecture is described in more detail elsewhere [6,8], including XML
schemas (written in RELAX NG [32]) for the PGIP and PGML languages.
This section describes our prototype implementation of the design.

The mediator maintains the overall state, comprising the proof scripts
under construction, their dependencies and an abstraction of the proof assis-
tant’s state. It sends commands to, and receives status messages from the
proof assistant; at the same time, it receives user input from the display, and
keeps the displays up-to-date. In principle, we can connect to more than one
proof assistant at the same time, but presently we cannot interchange any
data (such as proofs or theorems) between provers.

A display engine (or display for short) visualises the proof assistant’s state,
proofs, theorems, and so on. There can be more than one display connected
to the main broker, and there are different kinds of displays. A simple line-
oriented display displays lines of text and relays command lines typed by the
user; this corresponds to Emacs Proof General. Slightly more sophisticated, a
graphical display translates user gestures (drag&drop and so on) into textual
prover commands; thus, IsaWin becomes another specific display module in
this architecture. Other possible displays could include a web interface (either
client-side by running an applet in a browser, or server-side by embedding the
mediator into a web server via techniques such as servlets, ASP or CGI).

We further distinguish between active and passive displays. An active
display allows the user to enter commands, whereas a passive display primarily
visualises proofs, possibly using hyperlinked text.

Proof
Assistant

Proof
Assistant

Graphical User
Interface

Emacs

Prover
Encapsulation

File System Theory Store

History

Event Broker

Display:
PGWin

Display:
Emacs

PG Mediator

Tcl

PGIP

PGIP

Lisp

Fig. 6. System Architecture

Fig. 6 shows the architecture of the implemented system. Rounded boxes
denote separate components, and square boxes denote the different modules
of the mediator. The implementation is event based. Events are generated

12



either from user input, or change of state in the prover. The mediator is the
central event broker; it receives input events, updates its internal state, and
sends on change events to other parts of the system as necessary. Events are
structured: they contain PGIP messages.

We implement the mediator as a set of Haskell modules, loosely coupled by
Unix pipes to the other components. The mediator contains one central event
broker, and one event handling module for each module, such as displays
and proof assistants (see Fig. 6). This architecture is flexible and portable
(to support the Windows operating systems, one can either replace pipes by
sockets, or use compatiblity packages such as MinGW). The alternative would
be a component framework, which would either restrict us in the operating
system (e.g. DCOM or .NET for Windows only, DCOP is not for Windows) or
programming language (e.g. JavaBeans) or is too heavy-weight (e.g. CORBA)
for our purposes.

5.1 Events and Messages

The mediator is implemented in Concurrent Haskell, using the Glasgow Haskell
Compiler, with events as first-class values in Haskell [33]. That is, we have a
polymorphic datatype of events containing a value of any type, with opera-
tions to synchronise on an event, sequence an action with an event, combine
two events via deterministic choice, and others:

Event a

sync :: Event a -> IO a

(>>>=) :: Event a-> (a-> IO b)-> Event b

(+>) :: Event a-> Event a-> Event a

This allows us to write concurrent functional programs in a notation reminis-
cent of process algebras such as the π-calculus [28].

Events contain PGIP messages. To model PGIP faithfully in Haskell, we
use HaXML [36]. From a given DTD, HaXML generates a series of Haskell
datatypes, one for each element, along with functions to read and write XML.
The advantage is that the type security given by the DTD extends into our
program, making it nearly impossible to send messages containing invalid
XML, and detecting the reception of invalid XML immediately. The broker
does further validation on the messages, but it tries to be a robust as possible;
e.g. if a response does not refer to a valid request, it is quietly discarded (and
a log file entry is written).

There are different types of events, corresponding to different elements in
the PGIP DTD, represented by different types in the mediator. These include:

• Prover command events (ProverCmd) are commands sent to the prover en-
capsulation, either generated from command events, or when replaying proof
scripts.

13



• Prover message events (ProverMsg) are either messages from the proof as-
sistant in response to proof commands, containing e.g. a new prover state
or an error returned by the prover, or configuration messages from the
proof assistant, adding or changing menus, shortcut buttons, icons, or the
drag&drop table. They are interpreted by the event broker, which updates
its internal states accordingly, and updates the connected displays.

• Display command events (type DispCmd) are commands input by the user.
Commands are generated by active displays, either by interpreting gestures
or by the user typing a command line (or mixtures of the two), and then
handled by the event broker.

• Display message events (DispMsg) contain messages to be displayed, such as
a new proof assistant state, error or warning messages. Display events are
generated by the event broker from proof response events, or as an answer
to user input (e.g. trying to browse beyond the end of the history).

DispState
Result

DispState
Result

ParseScript

UnparseCmd

BrokerDisplay

DCUsercmd

DispNewObject/DispHist ProverCmd (Proofstep ...)

Prover

Fig. 7. A typical event sequence.

To illustrate the event concept, Fig. 7 shows a typical interaction sequence:
the users enters a command, it gets parsed by the prover, a new object appears
on the desktop, and as the prover computes the results of the command, the
broker updates its internal state and the display.

As the interaction sequence shows, the prover may send its responses to
one request in several PGIP messages, reporting on the progress of the proof.
Interactive provers can take very long and sometimes even diverge; so it is
important that these messages are displayed as soon as received, to keep the
user informed.

To allow for the possibility of divergence, we must be able to interrupt the
prover. Presently, the prover is run in a child process on the same machine,
so we can use signals. For a distributed setup where the prover may run on
another machine, we will need provision to transmit out-of-band interrupt

14



signals, for example by running the prover as child process of the process
listening on the actual socket.

5.2 Display Engines

All display engines, even such seemingly different ones like Emacs and PGWin,
serve to visualise display messages originating mainly from the event broker.
Crucially, display messages and user input may refer to earlier messages. For
example, in later proofs users will usually want to use theorems they have
proven earlier.

In order to subsume different display engines in a uniform framework,
we use the notion of an object as introduced by the generic graphical user
interface (see Sect. 3 above). An object is anything the system needs to keep
track of: most prominently, theories, theorems and ongoing proofs, but also
auxiliary objects such as tactics, rewrite rules, and so on. Objects are typed.
Types comprise basic types (such as theories, theorems, and proofs), and
prover-definable types (such as the auxiliary objects, which vary from prover
to prover). Each display must visualise at least the basic types, but may not
visualise all of the other types. Thus, while PGWin represents all objects
by their icons (the icon forms part of the type definition), Emacs will only
represent those types corresponding to a span, which is a particular line range
in a particular text buffer.

All display engines have to implement certain operations, such as display
warnings, errors and status messages; create a new object; update a previously
displayed object; outdate an object; receive user input; etc. Technically, we
define a type class Display, which defines the operations that a display has to
implement, for example creating and updating objects, generating command
events (DispCmd), and receiving display message events (DispMsg):

class Display d where

newObject :: d-> ObjId -> ObjType -> DispAttr -> IO ()

updObject :: d-> ObjId -> ObjText -> IO ()

bind :: d-> IO (Event DispCmd)

send :: d-> DispMsg-> IO ()

Every kind of display engine is modelled by a different type, but all are in-
stances of the display class:

instance Display IsaWin where

-- definitions of functions...

instance Display Emacs where

-- definitions of functions...

All displays are kept in one heterogeneous list (using existential types [22]):
display events are sent to all elements of this list, and the command events

15



generated by all displays are the command events of each display combined
with the obvious extension of the binary choice operator (+>) to lists of events.

Notice that implementing a notion of object within the interface allows
us to keep context information with objects which specifies dependencies: ef-
fectively, a position within the linear PGIP protocol. This means that the
user can switch between open proofs, for example, by selecting objects with
the mouse. Behind the scenes the theory might be switched by aborting the
currently open proof and closing its theory and file, before opening the file and
theory of the newly selected proof. This is why displays must support outdat-
ing and updating operations on objects: if an earlier definition is undone, or
an ancestor theory is retracted, all dependent objects will be outdated by the
broker, and marked as temporarily unavailable in the interface.

At present, we have implemented one main display component, PGWin.
It is described further in Section 6 below. There is also a control display
which can launch other displays. Work is underway within the present Emacs
version of Proof General to also support a PGIP and Lisp interface to Emacs
as suggested in Fig. 6.

5.3 A PGIP-enabled version of Isabelle

The other piece needed for our prototype implementation is some proof as-
sistant itself. By design, we want to interface with existing theorem provers
with minimal effort, but recognising that they will need some customization.

An experimental effort to PGIP-enable Isabelle/Isar [38] has been under-
taken, with the help of the Isabelle development team. The implementation
consists of a 500-line extension to the existing Standard ML module for inter-
facing with Proof General that is already supplied with Isabelle. There have
also been some minor changes in other Isabelle modules.

Presently, we use Isabelle’s (somewhat limited) built-in XML parser and
XML output functions. Contrary to the strongly-typed approach used in the
mediator, this implementation does not automatically guarantee to produce
(nor parse) XML which conforms to the PGIP schema, since we have no ap-
pealing tool such as HaXML to automate the conversion to an SML datatype.
Once the design of PGIP is settled, we will implement a suitable SML datatype
manually.

The PGIP implementation inside Isabelle has been largely straightforward,
although a few thorny issues have come to light. To produce correct XML,
we have to be careful with escaping special characters; this requires checking
all of the places where Isabelle outputs messages, in particular, to avoid the
possibility of double-escaping because we already adjust the pretty-printer for
Isabelle terms to produce PGML format. It also turned out to be suprisingly
difficult to supply a parser for the Isar language, since the one inside Isabelle
is constructed using parser combinators, which do not build a parse tree or

16



record input position information. A final open issue is the question of equip-
ping Isabelle terms with subterm structure information in the term printer.
Although this had been implemented as part of the IsaWin effort [25], the
code was unfortunately written for an older version of Isabelle. It is hoped
that further work on the PGIP support in Isabelle will address these issues.

6 The PGWin Display Engine

In the PG Kit system architecture, PGWin is one particular display. Its design
is a synthesis of Proof General and IsaWin, resulting in a novel interface which
combines Proof General’s text-based interaction with IsaWin’s graphical user
interface. The idea is to display both the icons and the text containing the
textual representation of the objects. Thus, we show both an icon on the
desktop for e.g. a proven theorem, and the text containing the proof. Since
the text is inherently linearly ordered, the unordered display of icons on a
notepad is replaced by a linearly ordered, hierarchical tree display.

Fig. 8. The interface of the PGWin display engine (prototype).

Fig. 8 shows a screenshot of the prototype. We can see the objects dis-
played by icons on the left, and the actual proof text in an editor on the right.
Users can either edit the proof text directly in the editor (using the same
script management techniques as Proof General), or manipulate the icons.

User gestures are translated into commands by a table indexed with the
types of the objects. This table, along with the types of the proof assistant, the

17



icons and many other details of the visual appearance are determined by dis-
play configuration messages, which form part of PGIP. Thus, when connecting
a proof assistant to the mediator, the proof assistant sends configuration mes-
sages which tell the system the types of objects the proof knows about, and
the commands triggered by drag&drop. There are further display configura-
tion messages to add, change, or delete a custom menu’s entries, configuration
options, etc.

Fig. 9 shows an example of a PGIP configuration message sent by Is-
abelle/Isar (without the surrounding <pgip> packet). The first of these mes-
sages sets up the interface such that if a theorem is dropped onto another
theorem, forward resolution is performed. To this end, the operation com-
mand (given in the <opcmd> element) is expanded such that the name of the
first theorem (say sym) is inserted for the first argument (%1), and the name
of the second theorem (say refl) is substituted for the second argument (%2).
The string generated by this expansion (sym THEN [refl]) is then sent to
the mediator, and from there to the proof assistant. The second of the con-
figuration messages in Fig. 9 sets up backward resolution. The empty target
type (<optrg>) means that it is a proof operation. When a theorem (say
allI) is dropped onto the ongoing proof, the command <proofstep>apply

rule (allI)</proofstep is generated (<proofstep> because this is a proof
operation) and sent.

<guiconfig>

<opn name="forward resolution">

<opsrc>theorem theorem</opsrc>

<optrg>theorem<optrg>

<opcmd>%1 [THEN %2]</opcmd>

</opn>

<opn name="apply rule">

<opsrc>theorem</opsrc>

<optrg></optrg>

<opcmd>apply (rule %1)</opcmd></opcmd>

</opn>

</guiconfig>

Fig. 9. Configuring drag&drop: forward resolution and backward resolution

Users can freely mix graphical and textual interaction (for example, type
one proofstep, and use drag&drop for the next one). This mixture has some
distinct advantages: it accustoms users to the syntax of the command lan-
guage, since they will see it appearing in the history, it gives full access to
all of the prover’s commands (in IsaWin, only those commands which had

18



been configured could be used from the graphical interface), and it allows the
interface to be used with any proof script.

The PGWin display engine is implemented in HTk, a functional encapsu-
lation of the graphical user interface library and toolkit Tcl/Tk into Haskell
[18]. Thus, the PGIP events are translated into Tcl code within Haskell,
which is then sent on to the Tcl/Tk interpreter wish (see Fig. 6). A future,
alternative graphical display engine might communicate externally in PGIP;
but there is still a considerable amount of implementation work to organise
the graphical interface which we believe is better done in Haskell than in an
untyped scripting language like Tcl.

7 Conclusions and Outlook

This paper has described the concepts underlying the synthesis of the Proof
General and IsaWin interfaces into one combined interface. The new interface
has an event-based architecture based on the PG Kit, and consists of several
components communicating in the PGIP proof protocol. The implementation
of a first prototype of the PG Kit architecture has led to a many clarifications
and extensions of the PGIP protocol; more are planned. The system comes
with a new user interface, which allows a mixed graphical and textual interac-
tion, combining the advantages of both Proof General and IsaWin. Moreover,
the open architecture opens the way to more easily implementing new inter-
action mechanisms, and developing a truly generic high-level interface.

As it stands, the current implementation is a research prototype. We hope
to release it to other researchers in the near future for further experimentation
and feedback. Presently, the system supports Unix-like systems only, but a
port to Windows is very possible; we have taken care in our architecture not
to tie ourselves to one particular platform. An advantage of our prototype
as it stands is the user does not need to install anything on his system apart
from the compiled executable, the PGIP-enabled prover and Tcl/Tk (which
is part of most modern Unix systems anyway).

In the longer run, we hope for further implementations of PG Kit. For
example, work is beginning at the University of Edinburgh to integrate PG Kit
into the Eclipse workbench [16], which is an extensible Integrated Development
Environment designed to allow easy tool integration.

7.1 Related Work.

In recent years there have been a number of projects introduced with the aim
of forstering interoperability between theorem proving-like tools, although not
always considering interface aspects. We give a brief overview here, and then
mention some particular interfaces.

19



HELM [3] and the more recent MoWGLI [29] are centered around seman-
tically annotated mathematical hypertext documents (the “Semantic Math-
Web” [2]), and tools supporting this; a user interface is part of this effort as
well, but rather as a user front-end for the semantic math-web.

The OMEGA prover [9] started as a framework to integrate different auto-
matic provers. It has developed into MathWeb, which uses the XML format
OMDoc [20] as an exchange language, and the ActiveMath [27] project, which
is a learning environment based on OMDoc. OMEGA has a user interface,
LOUI, but it is not generic in our sense; MathWeb uses style sheets for visual-
isation. Nonetheless, the system architecture is not unlike ours: components
loosely coupled over sockets using a customised middleware architecture (built
from XML-RPC and KQML), a central broker component, and a store for the-
orems (called MBase [21]).

Logosphere [34] is a recently launched project aiming at connecting differ-
ent provers, but with an emphasis on higher-order logic; the aim is to create
a formally verified “Digital Library” of proof and theorems.

Prosper [15] uses another approach to interoperability, aiming at connect-
ing different automated proof tools together: at the core of the system an LCF
prover kernel is used to guarantee logical consistency. Tools are wrapped up as
components, using the Prosper Integration Interface. Although this is a more
logic-centred view, with an emphasis on the exchange of proofs and theorems,
there are interesting similarities to our architecture: again, a light-weight cus-
tomised middleware architecture implemented in a functional language and a
central broker component with provers (and other tools) connected by loose
coupling.

CtCoq [10], and its more recent descendent PCoq [1], are interfaces specif-
ically for the Coq system, based around script management similar to that
implemented in Proof General. In CtCoq and PCoq output is sent as ab-
stract syntax to the interface, where pretty-printing and layout takes place;
the transfer of abstract syntax also allows the implementation of features such
as proof-by-pointing and rewrite by drag-and-drop.

We briefly mention a couple of other notable theorem prover interfaces.
The Jape [13] system is a prover with a sophisticated graphical interface which
can display sequent-style proofs as lists of inferences or using box-style. User
interaction is made very straightforward by selecting premises or conclusions
using mouse clicks, and choosing inference rules from menus. The PVS in-
terface [19] is another Emacs-based interface written in Emacs lisp, notable
because it provides ways of managing the proof obligations of PVS, so that
theories may be constructed in a flexible order.

To sum up the review on related work: most interesting interfaces are
geared towards one specific prover, even if potentially usable for more than
one. So it is certainly desirable to look for an advanced interface which is

20



truly generic and combines the best aspects of already existing interfaces; this
is particularly pertinent when one bears in mind the lack of resource available
to the community for work on interfaces. When combining different provers,
the architecture of choice seems to be loose coupling via sockets or pipes, with
a custom middleware often implemented in a functional or functional-logical
language— quite similar to the architecture we have designed.

7.2 Outlook.

We envisage further extensions of PGIP in mainly three directions: covering
the structure of theories as well as the structure of proofs; covering concrete
syntax mechanisms for parsing and pretty-printing logical terms; and eventu-
ally, inventing a generic prover-independent scripting language.

Currently PGIP has a command to open a named theory, and a command
to start proofs of named theorems in that theory. We would like to generalise
this to consider naming other elements that appear in theories, such as dec-
larations of types or constants within the logic — both of these are currently
treated within PGIP as “theory steps” which are not further interpreted. In
the first case, these additional named elements will allow more flexible process-
ing of proofs scripts (for example, together with prover-supplied dependency
information, refactoring operations to do renaming or move around defini-
tions). In the second case, this will open the way to understanding abstract
syntax trees for logical terms in the interface, and we can let the interface
provide parsing and pretty-printing (rendering) facilities by adding concrete
syntax directives to declarations. Presently, many provers offer these services
as part of their syntax machinery, but it seems to us to be an extra-logical
consideration which ought to be managed by the interface; so much for the
better if there is a good generic implementation of such facilities.

One step further is the definiton of a generic scripting language. Presently,
proof scripts are still stored in the proof assistant’s native format; a generic
scripting language would alleviate users from needing to learn different proof
script languages when switching between proof assistants and their logics. It
might ultimately even allow the exchange of replayable proofs, or parts of
proofs, between different proof assistants. The definition of such a scripting
language might be based on an already established formalism such as Wenzel’s
Isar language [38], or might be designed afresh starting from a very simple
language which offers a sequencing and a definitional operator, which describes
the notion of hiproofs [14].

Acknowledgements. We’re grateful for the helpful suggestions for improve-
ments to this paper provided by the referees, and for interesting discussions
on the topic with Ewen Denney and various participants of UITP 2003. DA
benefited from support provided by the MRG project (IST-2001-33149) which

21



is funded by the EC under the FET proactive initiative on Global Computing.

References

[1] Amerkad, A., Y. Bertot, L. Rideau and L. Pottier, Mathematics and proof
presentation in Pcoq, in: Proceedings of Proof Transformation and Presentation
and Proof Complexities (PTP’01), 2001.

[2] Asperti, A., L. Padovani, C. S. Coen and I. Schena, HELM and the semantic
math-web, in: R. J. Boulton and P. B. Jackson, editors, Theorem Proving in
Higher Order Logics TPHOLs 2001, Lecture Notes in Computer Science 2152
(2001), pp. 59–74.

[3] Asperti, A. et al., HELM: Hypertextual electronic library of mathematics (2002),
University of Bologna, http://helm.cs.unibo.it/.

[4] Aspinall, D., Proof General: A generic tool for proof development, in: Graf and
Schwartzbach [17], pp. 38–42, http://homepages.inf.ed.ac.uk/da/papers/
pgoutline/

[5] Aspinall, D., Protocols for interactive e-proof (2000), http://proofgeneral.
inf.ed.ac.uk/kit/

[6] Aspinall, D., Proof General Kit (2002), white paper, http://proofgeneral.
inf.ed.ac.uk/kit/

[7] Aspinall, D., H. Goguen, T. Kleymann and D. Sequeira, Proof General (2003),
system documentation, http://proofgeneral.inf.ed.ac.uk/doc

[8] Aspinall, D. and C. Lüth, Commentary on PGIP (2003), http://
proofgeneral.inf.ed.ac.uk/kit/.

[9] Benzmüller, C. et al., ΩMega: Towards a mathematical assistant, in:
W. McCune, editor, 14th International Conference on Automated Deduction
— CADE-14, LNAI 1249 (1997).

[10] Bertot, Y., The CtCoq system: Design and architecture, Formal Aspects of
Computing 11 (1999), pp. 225– 243.

[11] Bertot, Y., T. Kleymann and D. Sequeira, Implementing proof by pointing
without a structure editor, Technical Report ECS-LFCS-97-368, University of
Edinburgh (1997), also published as Rapport de recherche de l’INRIA Sophia
Antipolis RR-3286.

[12] Bertot, Y. and L. Théry, A generic approach to building user interfaces for
theorem provers, Journal of Symbolic Computation 25 (1998), pp. 161–194.

[13] Bornat, R. and B. Sufrin, A minimal graphical user interface for the Jape proof
calculator, Formal Aspects of Computing 11 (1999), pp. 244– 271.

22

http://helm.cs.unibo.it/
http://homepages.inf.ed.ac.uk/da/papers/pgoutline/
http://homepages.inf.ed.ac.uk/da/papers/pgoutline/
http://proofgeneral.inf.ed.ac.uk/kit/
http://proofgeneral.inf.ed.ac.uk/kit/
http://proofgeneral.inf.ed.ac.uk/kit/
http://proofgeneral.inf.ed.ac.uk/kit/
http://proofgeneral.inf.ed.ac.uk/doc
http://proofgeneral.inf.ed.ac.uk/kit/
http://proofgeneral.inf.ed.ac.uk/kit/


[14] Denney, E., J. Power and K. Tourlas, Hiproofs: A hierarchical notion of proof
tree (2004), draft.

[15] Dennis, L. A. et al., The PROSPER toolkit, in: Graf and Schwartzbach [17].

[16] The Eclipse Foundation, Project web site, http://www.eclipse.org.

[17] Graf, S. and M. Schwartzbach, editors, “Tools and Algorithms for the
Construction and Analysis of Systems,” Springer, 2000.

[18] HTk — graphical user interfaces for Haskell programs, http://www.
informatik.uni-bremen.de/htk.

[19] Kiniry, J. and S. Owre, Improving the PVS user interface, in: Proc. User
Interfaces for Theorem Provers UITP 2003, 2003, pp. 101– 122.

[20] Kohlhase, M., OMdoc: Towards an OpenMath representation of mathematical
documents, http://www.mathweb.org/omdoc/.

[21] Kohlhase, M. and A. Franke, MBase: representing knowledge and context for the
integration of mathematical software systems, Journal of Symbolic Computation
23 (2001), pp. 365– 402.

[22] Laufer, K., Type classes with existential types, Journal of Functional
Programming 6 (1996), pp. 485 – 517.

[23] Lüth, C., H. Tej, Kolyang and B. Krieg-Brückner, TAS and IsaWin: Tools for
transformational program developkment and theorem proving, in: J.-P. Finance,
editor, Fundamental Approaches to Software Engineering FASE’99, number
1577 in Lecture Notes in Computer Science (1999), pp. 239– 243.

[24] Lüth, C. and B. Wolff, Functional design and implementation of graphical user
interfaces for theorem provers, Journal of Functional Programming 9 (1999),
pp. 167– 189.

[25] Lüth, C. and B. Wolff, More about TAS and IsaWin: Tools for formal program
development, in: T. Maibaum, editor, Fundamental Approaches to Software
Engineering FASE 2000, number 1783 in Lecture Notes in Computer Science
(2000), pp. 367– 370.

[26] McNeil, F., “On the Use of Dependency Tracking in Theorem Proving,”
Master’s thesis, Division of Informatics, University of Edinburgh (2000).

[27] Melis, E., E. Andrès, J. Büderbender, A. Frischauf, G. Goguadze, P. Libbrecht,
M. Pollet and C. Ullrich, ActiveMath: a generic and adaptive web-based learning
environment, Artificial Intellligence in Education 12 (2001).

[28] Milner, R., “Communicating and Mobile Systems: the π-Calculus,” Cambridge
University Press, 1999.

[29] MoWGLI. mathematics on the web: Get it right by logics and interfaces, http:
//www.mowgli.cs.unibo.it/.

23

http://www.eclipse.org
http://www.informatik.uni-bremen.de/htk
http://www.informatik.uni-bremen.de/htk
http://www.mathweb.org/omdoc/
http://www.mowgli.cs.unibo.it/
http://www.mowgli.cs.unibo.it/


[30] The OpenMath Society, http://www.nag.co.uk/projects/openmath/omsoc/.

[31] Pons, O., Y. Bertot and L. Rideau, Notions of dependency in proof assistants,
in: Proc. User Interfaces for Theorem Provers, UITP’98, 1998.

[32] RELAX NG xml schema language (2003), http://www.relaxng.org/.

[33] Russell, G., Events in haskell and how to implement them, in: International
Conference on Functional Programming ICFP’01 (2001).

[34] Schürmann, C., F. Pfenning, M. Kohlhase, N. Shankar and S. Owre, Logosphere.
a formal digital library., http://www.logosphere.org/.

[35] Mathematical markup language (MathML), W3C Recommendation (1999),
http://www.w3.org/Math/.

[36] Wallace, M. and C. Runciman, Haskell and XML: Generic combinators or type-
based translation?, in: International Conference on Functional Programming
ICFP’99 (1999), pp. 148– 159.

[37] Wedler, C., Emacs package X-Symbol, http://x-symbol.sourceforge.net.

[38] Wenzel, M., “Isabelle/Isar — a versatile environment for human-readable formal
proof documents,” Ph.D. thesis, Technische Universität München (2001).

24

http://www.nag.co.uk/projects/openmath/omsoc/
http://www.relaxng.org/
http://www.logosphere.org/
http://www.w3.org/Math/
http://x-symbol.sourceforge.net

	Introduction
	Proof General Basic Concepts
	IsaWin Basic Concepts
	The Proof General Kit Architecture
	Communicating Interactive Proof Components
	PGIP: a Protocol for Interactive Proof
	PGML: A Markup Language for Proof Display
	Incremental Proof Development

	Implementing the PG Kit Architecture
	Events and Messages
	Display Engines
	A PGIP-enabled version of Isabelle

	The PGWin Display Engine
	Conclusions and Outlook
	Related Work.
	Outlook.

	References

