
Eclipse Proof General

David Aspinall 1

LFCS, School of Informatics, University of Edinburgh, U.K.

Abstract

This is a description of a plan for new research which has been awarded an Eclipse
Innovation Grant for 2004. The objective is to build a proof development environ-
ment for interactive theorem provers, using ideas of the Proof General project, and
in particular, using a protocol for interactive proof dubbed PGIP.

1 Background

The use of machine proof is becoming more widespread, and larger and more
complex formalizations are being attempted in numerous interactive theorem
proving systems, e.g., HOL [7], Isabelle [8], PVS [9], Coq [6]. Applications
of formal proof range from the development of high integrity hardware and
software systems to the desire to build a corpus of mechanically verified math-
ematics.

Some notable examples formal proof construction include: formalizing type
safety and a programming logic for Java in Isabelle (30k lines, 1400 lemmas);
the Fundamental Theorem of Algebra in Coq (80k lines, almost 3000 lemmas),
and the specification and verification of pipelined processors in PVS (examples
10k lines, 500 lemmas). It should be noted that formal proof texts of this
size are typically considerably more complex, dense, and interdependent than
similarly sized programs, and each of these cases represents several person-
years of work.

Yet, as formal proofs become larger, there has been precious little work
on how to manage their development, or to apply modern software engineer-
ing techniques such as refactoring — which are desperately needed to help
maintenance and re-use of proof scripts. The theorem proving community
recognizes this as a problem but has yet to seriously tackle the issue. A desir-
able approach would be to provide dedicated support for writing proofs within
a modern IDE such as Eclipse.

1 Homepage: http://homepages.inf.ed.ac.uk/da.



2 Proof General and PGIP

Proof General is a generic interface for interactive proof assistants, built on
the Emacs text editor [2,1]. It has proved rather successful in recent years,
and is popular with users of several theorem proving systems. Its success
is due to its genericity, allowing particularly easy adaption to a variety of
provers (primarily, Isabelle, Coq, and LEGO), and its design strategy, which
targets experts as well as novice users. Its central feature is an advanced
version of script management, closely integrated with the file handling of the
proof assistant. This provides a good work model for dealing with large-scale
proof developments, by treating them similarly to large-scale programming
developments insofar as Emacs supports them. Proof General also provides
support for high-level operations such as proof-by-pointing although these are
less emphasised and more difficult to implement within the limited widget set
provided by Emacs.

There are some drawbacks to the present Proof General. From the users’
point of view, it requires learning Emacs and putting up with its primitive,
inconsistent, and at times unintuitive UI. From the developers’ point of view,
it is rather too closely tied with the Emacs Lisp API which is restricted,
somewhat unreliable, often changing, and exists in different versions across
different flavours of Emacs. Both of these drawbacks could be addressed by
re-engineering the system within Eclipse.

Another engineering disadvantage of the present Proof General arose from
its construction following a product-line architecture of successive generalisa-
tion. As support for new provers was added, Proof General would need more
customization possibilities to allow it to be configured to work with a greater
range of input syntaxes, output patterns from tools, etc. This mechanism has
meant that little or no specific adjustment of the provers has been required,
but it has resulted in a rather overcomplicated instantiation mechanism.

To address this concern, work has begun on a new framework architecture,
dubbed Proof General Kit [4,3]. This architecture proposes a uniform protocol
for communicating with different interactive proof systems, called PGIP (for
Proof General Interactive Proof ). It is based on passing XML messages. It
has been designed by clarifying and abstracting the existing mechanisms used
in Emacs Proof General. We hope that implementors of interactive theorem
provers will be persuaded to equip their systems with PGIP support so that
they automatically gain interface support from the new Proof General tools.

2



3 Eclipse Proof General

Proof General in Eclipse would be an appealing environment for managing
formal proofs. The objectives of our research are:

• To develop Eclipse plug-ins which allow Eclipse to be used as a front-end in
the Proof General Kit framework, to drive the development of proof scripts
for back-end theorem provers. This will form the Eclipse Proof General
application.

• To investigate the development of new JDT-like tools for proof engineering
within Eclipse Proof General.

The first objective is the intial focus of our work. It is planned to build a
useful application which would be a viable replacement for the present Emacs
Proof General for its several hundred registered industrial and academic users.
The new tool should find use in undergraduate courses in formal proof and
industrial training courses in ITP systems supported by Proof General.

3.1 System architecture

Typically, proof scripts in are developed by an interactive, goal-directed dia-
logue with the theorem prover. The user issues a declaration, a definition, or
a goal stating a theorem to be proved. If a goal is given, the system enters a
mode where the user successively suggests steps in the proof, and the system
responds indicating progress, and what remains to be proved. The proof mode
is exited when the proof is completed. The proof steps, along with declara-
tions and definitions, are retained in a file as evidence, and so that the proof
may be replayed (and re-checked) later.

We want to use Eclipse to facilitate this process. Interaction will be centred
on the proof script, by providing a facility to send lines from the text editor
to the theorem prover incrementally. 2 To handle responses from the theorem
prover, we need to display a range of formats of information, possibly with
embedded navigation information (which provides for proof-by-pointing like
facilities). This prover output is delivered in a custom XML-based markup
language called PGML (”Proof General Markup Language”), which includes
elements for representing logical symbols.

The architecture of the proposed system is shown in Figure 1. The com-
munication between the Eclipse extensions and the theorem provers takes
place in PGIP, which provides a loose coupling for interactive theorem prov-
ing systems and their user interfaces. This is appropriate because theorem
provers are implemented in a variety of languages, and may be running on
remote machines. The PG mediator is a middleware mediator component

2 This is somewhat reminiscent of JDT’s scrapbook pages used to evaluate fragments of
Java code; but the expressions being evaluated in this case are not scrap!

3



Fig. 1. System architecture

which manages the connection between possibly several interface components
and theorem provers. It enforces the protocol for interactive proof, and main-
tains a persistent state modelling the position in a development. Interaction
with the PG mediator is used to define an Eclipse project, with specialised
markers stored for proof script files to represent meta-information about their
contents (e.g. whether a particular proof has been processed or not).

Work so far includes definitions of PGIP, PGML, and a prototype imple-
mentation of the PG mediator in Haskell [5]. There is also an experimental
patch for the theorem prover Isabelle/Isar which provides PGIP support. This
project will bring support for Eclipse by development of Eclipse plugins. The
new components required are:

(i) PGIP and PGML encapsulations

(ii) Proof state, object, and prover message viewers

(iii) Script Management facility provided for text editors

(iv) Syntax-configurable proof-script editors

(v) Additional toolbars and menus for navigation and prover querying, and
prover preference setting (configured using PGIP).

Initially, we will focus on supporting the theorem prover Isabelle/Isar and its
declarative proof language, but we will hope to extend to other systems soon.

For latest information on the project progress, see:

http://proofgeneral.inf.ed.ac.uk/kit.

References

[1] D. Aspinall, H. Goguen, T. Kleymann, and D. Sequeira. Proof General, 2003.
System documentation, see http://proofgeneral.inf.ed.ac.uk/doc.

[2] David Aspinall. Proof General: A generic tool for proof development. In
Susanne Graf and Michael Schwartzbach, editors, Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes in Computer Science 1785,
pages 38–42. Springer, 2000.

[3] David Aspinall. Protocols for interactive e-proof, 2000. Available from http:
//proofgeneral.inf.ed.ac.uk/doc.

4

http://proofgeneral.inf.ed.ac.uk/kit
http://proofgeneral.inf.ed.ac.uk/doc
http://proofgeneral.inf.ed.ac.uk/doc
http://proofgeneral.inf.ed.ac.uk/doc


[4] David Aspinall. Proof General Kit. White paper. Available from http:
//proofgeneral.inf.ed.ac.uk/kit, 2002.

[5] David Aspinall and Christoph Lüth. Proof General meets IsaWin. In Proc. User
Interfaces for Theorem Provers 2003 (UITP’03), September 2003. Available
from http://www.informatik.uni-bremen.de/uitp03/.

[6] Coq. Home page at Isabelle.

[7] HOL. Home page: http://www.cl.cam.ac.uk/Research/HVG/HOL/HOL.html.

[8] Isabelle. Home page at http://www.cl.cam.ac.uk/Research/HVG/Isabelle/.

[9] PVS. Home page at http://pvs.csl.sri.com/.

5

http://proofgeneral.inf.ed.ac.uk/kit
http://proofgeneral.inf.ed.ac.uk/kit
http://www.informatik.uni-bremen.de/uitp03/
Isabelle
http://www.cl.cam.ac.uk/Research/HVG/HOL/HOL.html
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
http://pvs.csl.sri.com/

	Background
	Proof General and PGIP
	Eclipse Proof General
	System architecture

	References

